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We have derived analytical expressions of the Cramér-Rao
lower bounds on spectral parameters for singlet, doublet, and
triplet peaks in noise. We considered exponential damping
(Lorentzian lineshape) and white Gaussian noise. The expressions,
valid if a sufficiently large number of samples is used, were derived
in the time domain for algebraic convenience. They enable one to
judge the precision of any unbiased estimator as a function of the
spectral and experimental parameters, which is useful for quanti-
tation objectives and experimental design. The influence of con-
straints (chemical prior knowledge) on parameters of the peaks of
doublets and triplets is demonstrated both analytically and nu-
merically and the inherent benefits for quantitation are shown.
Our expressions also enable analysis of spectra comprising many
peaks. © 2000 Academic Press

Key Words: MR spectroscopy; quantitation; error estimation;
Cramér-Rao bounds; prior knowledge.

1. INTRODUCTION

In signal processing, the Crame´r-Rao bound (CRB) (1–3) on
he variance of unbiased estimators is widely used as a me
f attainable precision of parameter estimates from a give
f observations (4). This paper enhances its usefulness
agnetic resonance spectroscopy quantitation.
Since clinical conditions do not permit us to obtain stan

eviations by repeating measurements, one can use the
nstead. Their main properties are as follows:

● The correct model function must be used.
● The precision of the quantitation estimatorscannotsuper

sede the CRBs.
● The CRBs are independent of the estimation proce

Consequently, the same CRBs apply to both the frequenc
the time domain estimators, provided that they lead to
unbiased estimate.

● The CRBs of the frequencies determine the spectra
olution.

● The CRBs of the amplitudes reveal whether the quan
tion is sufficiently precise.

● The CRBs are useful for experimental design, i.e.,
allow us to optimize the sample positions (5–7) or, when som
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parameter is to be estimated with a specified precision
minimum number of acquisition averages can be predicte

● Prior knowledge of relations between model parame
decreases the CRBs and consequently increases the pre

Consequently, the CRBs give precious insight into the
tential performance of quantitation estimators. Evaluatio
the CRBs requires inversion of the Fisher information matrF
whose size equals the number of real-valued parameters
estimated. When a large number of sinusoids is invo
inversion ofF becomes analytically intractable, and the CR
are to be computed numerically. Nevertheless, expressio
CRBs on the frequencies have been reported in a numb
papers (8–14) but to the best of our knowledge analyti
expressions for all parameters were only given for a singl
nonoverlapping peaks in Refs. (15–18). We succeeded in d
riving analytical expressions for CRBs on all free parame
for two and three exponentially damped sinusoids in Gau
noise, valid if a sufficiently large number of samples is u
These expressions were conveniently derived in the time
main using the symbolic algebra software Maple (19) to invert
F. They enable one to judge the precision of model param
as a function of the spectral and experimental parameter

First, we rederive the CRBs for a singlet (16) and point ou
ome interesting properties. Then, we treat the cases
oublet and a triplet with overlapping constituents. Su
uently, we express the influence of overlap on the m
arameter estimates of the involved peaks in terms of int

ion coefficients. These coefficients provide strong insi
oncerning the resolving power of the quantitation meth
hen, we study the influence of prior knowledge of relat
etween model parameters of the constituents of double

riplet structures (i.e., knowledge of relative frequencies,
litude ratios) and point out the inherent benefits on preci
inally, we show that our theoretical results obtained for tw

hree peaks can be applied to real-world signals.

2. ANALYTICAL TREATMENT

The CRB theory is based on the so-called Likelihood fu
tion (20). Supposing that the noiseless data can be ex
1090-7807/00 $35.00
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312 CAVASSILA ET AL.
modeled by the complex-valued time domain model func
x̂n, n 5 0, . . . , N 2 1, the measured dataxn can be written
as

xn 5 x̂n 1 bn, [1]

where bn is Gaussian-distributed noise. Since the nois
complex-valued, the probability ofbn (and samplexn) is the

roduct of two distribution functions, one for the real part
ne for the imaginary part, which are supposedly uncorrel

P~bn! 5
1

Î2ps r
2 expS2bnr

2

2s r
2 D 1

Î2ps i
2 expS2bni

2

2s i
2D , [2]

wheresr ands i are, respectively, the standard deviations o
real and imaginary parts of the noise. In NMR, general
quadrature lock-in detection provides the real and imag
parts of the signal which do not modify the characteristic
the noise distribution. Consequently, we can assume thatsr 5
s i 5 s. The joint probability functionP of the measureme

5 ( x0, x1, . . . , xN21)
T (the superscript T denotes t

transposition), the so-called likelihood function, equals
product of the probability functions of all samples:

P~b! 5 S 1

2ps 2D N

expS2
¥ n50

N21ibni 2

2s 2 D , [3]

whereb 5 (b0, b1, . . . , bN21)
T.

It is common practice to use the logarithm of this func
P(b).

L 5 ln P~b! 5 2N ln 2ps 2 2
1

2s 2 O
n50

N21

ibni 2 [4]

5 2N ln 2ps 2 2
1

2s 2 O
n50

N21

3 ~~ xnr 2 x̂nr!
21 ~ xni 2 x̂ni!

2!. [5]

s can be seen from Eq. [5], in the case of a Gaussian n
aximizing L amounts to minimizing the sum of squa

esidues. The Fisher information matrix is defined by (21)

F 5 EFSL

pD
TSL

pDG , [6]

hereE stands for Expectation value andp 5 ( p1, p2, . . . ,
pNp)

T represents theNp real-valued model parameters. Work
out the expectation,F can be expressed as the real part
omplex-valued matrix product (22), i.e.,
n

is

d
d,

e
a
ry
f

e

se,

a

F 5
1

s 2 R~D HD!, [7]

hereDnl 5  x̂n/pl for n 5 0, 1, . . . ,N 2 1 and l 5 1,
, . . . ,Np. The size ofF equals the numberNp of real-valued

parameters to be estimated. The superscript H denotes H
tian conjugation andR stands for real part. The matrixD
equires computation of the derivatives of the samplesx̂n with

respect to the parameterspl using their true values. The CR
on the standard deviations of the estimated parametersp l are
given by the fundamental Crame´r-Rao inequality,

sp l
$ CRBpl

5 Î~F 21! ll . [8]

As seen from Eq. [8], evaluation of the CRBs requires inv
ing the Fisher information matrixF.

If we suppose that the signal can be modeled by a sumK
exponentially damped sinusoids, each model samplex̂n can be
written as

x̂n 5 O
k51

K

ck exp~~ak 1 jvk!nts!exp~ jfk!

; O
k51

K

ckzk
n exp~ jfk!, n 5 0, 1, . . . ,N 2 1, [9]

wherec, a 5 21/T*2, v and f are, respectively, the amp-
tudes, the damping factors (minus the inverse of the app
transverse relaxation timeT*2), the angular frequencies, and
phases,j 2 5 21, t s is the sampling interval, and thezk are the
poles of the signal. With this model function the elementsF
contain summations of the form

O
n50

N21

~nts!
iexp~~a 1 jv!nts!, [10]

here i equals 0, 1, or 2. In order to make later calculat
ractable, the following simplifications were adopted. F
N 5 Nts was assumed large enough to make the func

t iexp((a 1 jv)t), i 5 0, 1, 2, small with respect to the no
level. This leads to asymptotic expressions of the CRBs15).

econd, considering that the sampling ratet s
21 is satisfied an

tN is large (23), Eq. [10] can be approximated by analyti
ntegral expressions given in (24),

E
0

`

t iexp~~a 1 jv!t!dt 5 2i ! ~a 1 jv! 2i21, a , 0.

[11]
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313CRAMÉR-RAO BOUND EXPRESSIONS FOR OVERLAPPING PEAKS
With the model function in Eq. [9], the size ofF equals 4K.
Then, when a large number of sinusoids is involved, analy
inversion of matrixF becomes intractable and the CRBs m
be computed numerically rather than analytically. Never
less, if prior knowledge on relations between model param
is available, constraints can be imposed on model param
which in turn reduces the size ofF.

We have succeeded in deriving analytical expressions o
CRBs on spectral parameters for isolated (well separ
peaks and for two and three overlapping peaks. These ex
sions enable one to make an estimation of the precisio
parameters as a function of spectral and acquisition param
Consequently, they are useful for experimental design. M
over, they obviate the need for running extensive nume
calculations.

3. THE CRAMÉR-RAO LOWER BOUNDS FOR ISOLATED
AND OVERLAPPING PEAKS

Singlets or Isolated Peaks

For a single or isolated peak, characterized by four pa
etersp 5 (c, a, f, v)T, F21 is the following 43 4 matrix
15, 16):

F 21 5 2tss
2

c a f v

1
4a 4a 2/c 0 0

4a 2/c 8a 3/c2 0 0
0 0 4a/c2 4a 2/c2

0 0 4a 2/c2 8a 3/c2
2 . [12]

Recall that this result is valid if the numberN of samples i
ufficiently large implying thattN

i exp((a 1 jv)tN), i 5 0, 1,
, is small.
The diagonal elements ofF21 are the variance bounds on

parameters (squares of the CRBs). The nondiagonal ele
of F21 are the covariance bounds between the model par-
ers and the correlation between model parameterspl andpm is
governed by the relation

r lm 5
~F 21! lm

Î~F 21! ll~F
21!mm

. [13]

From Eq. [12] one can infer the following:

● The CRBs on the angular frequency and the dampin
equal to each other. They depend strongly on the dampin
are inversely proportional to the signal-to-noise ratio (SN
The expression is

CRBv 5 CRBa 5 2Î2(2a)3/ 2Îts

s

c
. [14]
al
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● The CRB on the amplitude depends only on the noise
not on the amplitude. It isc times that on the phase. T
expression is

CRBc 5 c CRBf 5 2~2a! 1/ 2Îts s. [15]

● Using Eqs. [12] and [13] one finds that both the corr
tion between the angular frequency and phase and the
lation between the damping and the amplitude equal 1/=2. All
other correlations are zero.

● All CRBs are proportional to the square root of the s
pling interval. This suggests that oversampling decrease
CRBs. However, the noise obtained after the antialiasing
pass filter included in the receiver chain is still, white,
Gaussian and its spectral density is constant, consequ
s/=DF 5 s=t s 5 cst whereDF is the spectral bandwid
(25). Consequently, no gain should be expected but note
he reduction of the quantitation noise due to oversam
26) is not taken into account.

The noise standard deviations is inversely proportional t
the square root of the number of acquisition averages. T
when some parameter is to be estimated with a spe
precision, the minimum number of acquisition averages ca
predicted.

The above results are also valid for a singlet peak th
isolated from the other peaks in the spectrum (see nex
tion).

Doublets

For two overlapping peaks with parametersc1, v 1, a 1, f 1;
c2, v 2 5 v 1 1 Dv, a 2, f 2 (Dv 5 2pJ, J being the scala
coupling) and using Eq. [11], we derived analytical express
for the 64 elements ofF (see Table 1). To simplify th
expressions and remove the dependency inf, we assumed th
f1 andf2 are equal (e.g., when the receiver dead time is e
to 0 or known). We introduced the overlap factorR,

R 5
a1 1 a2

Dv
, [16]

which characterizes the doublet shape.
In the case of well-separated peaks, the nondiagona

ments ofF connecting the 43 4 diagonal blocks are sm
(R3 0) and the matrix approaches a block diagonal ma
see Fig. 1. The matrix expressions given in Eq. [12] ca
easily derived by inverting each 43 4 diagonal block sep
rately. In the case of overlapping peaks, the elements con
ing the 43 4 diagonal blocks are significant which in tu
implies that one must analytically invert the entire 83 8 matrix
F. For that, we used Maple and arrived at interesting analy
expressions forF21 (27).

For both peaks, the CRBs on the angular frequencies
ampings turn out to be equal to each other:
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CRBvk
5 CRBak

5 corrv CRBvk

s , k 5 1, 2, [17]

where CRBvk

s is defined by Eq. [14] and pertains to peak
considered isolated (the superscript s indicates the case
single peak). Furthermore,

corrv 5
1 1 R2

1 1 R2h 2 $ 1, [18]

where

h 5
a1 2 a2

a1 1 a2
[19]

represents an asymmetry factor of the doublet. Equation [1
seen to be the product of the CRB pertaining to an iso
peak and a term corrv denoting the interaction between the t
peaks. The term corrv depends on the dampings and on
frequency separation of the two peaks butnot on their ampli
tudes. In addition, Eq. [18] shows that the interaction betw
two signal components is small when one decays much
slowly than the other (ua2u ! ua1u) or when the peaks are w
separated such thatR 3 0. Figure 2a displays corrv as a
function of the inverse of the normalized parametersa91 5
a1/Dv anda92 5 a2/Dv. Note that corrv is largest when the tw
dampings are equal.

The CRB on the amplitudeck is ck times that on the pha
f k. As before, the expression is the product of the CRB
single peak and an interaction term

CRBck
5 ckCRBfk

5 corrck
CRBck

s , k 5 1,2, [20]

where CRBck

s is defined by Eq. [15] and pertains to the peak
considered isolated and

FIG. 1. Example of a block diagonal Fisher information matrixF for a
ignal containingK peaks. Each square represents a 43 4 block. The elemen
n the white squares are near zero.
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315CRAMÉR-RAO BOUND EXPRESSIONS FOR OVERLAPPING PEAKS
corrc1 5 Î ~1 1 R2!@~1 1 R2! 2

1 4a91a92~1 1 a92
2 2 3a91

2 1 6a91a92!#

~1 1 R2h 2! 3 .

[21]

he quantity corrc2 is obtained by exchanging the subscrip
and 2 in the expression of corrc1. Note that corrc1 5 corrc2

when a1 5 a2. The interaction term corrck and consequent
CRBck doesnot depend on the amplitudes of the two peaks
only on the overlap which in turn is governed byR, defined in

FIG. 2. 3D maps showing the interaction factors for a doublet. (a) cv

and (b) corrc1 as a function of the normalized parametersDv/a1 andDv/a2.

TAB
Cramer-Rao Lower Bounds on the Parameters of a Symmetric D

RBs on the Isolated-Peak Parameters CRBc
s 5 2(2a)1/2=tss a

Frequencies, (c) Fixed Frequencies and Dampings, and (d) Chem

CRBv1 5 CRBv2

a (1 1 R2) CRBv
s

b 0

c 0

d Î ~1 1 R2! 3~1 1 2R2!

2~1 1 8R2 1 7R4 1 4R8!
CRBv

s

t

Eq. [16]. Consequently, statistically speaking no problem
to be expected when one peak of the spectrum is very s
such as the water or fat peaks. This result suggests that
subtraction of a dominant signal is not necessary, provided
its model function is known. Moreover, one can infer th
broad overlapping background peak severely hampers th
cise determination of the parameters of a superimposed p
interest.

Figure 2b shows the interaction term corrc1 as a function o
the inverse ofa91 anda92. Like corrv, corrc1 is maximal when th
two dampings are equal and can reach very large va
Equations [18] and [21] are simpler in the case of a symm
doublet with parametersa 5 a 1 5 a 2, c 5 c1 5 c2, f 5
f 1 5 f 2, v 2 5 v 1 1 Dv, and R 5 (2a)/Dv. The
corresponding CRB expressions are given in Table 2.
interaction terms corrc and corrv are displayed in Fig. 3as a

2
blet as a Function of the Overlap Factor R 5 (2a)/Dv and of the
CRBv

s 5 2=2(2a)3/2=tss/c, (a) No Prior Knowledge, (b) Fixed
l Prior Knowledge as Defined in the Text

CRBc1 5 CRBc2

=(1 1 2R2)(1 1 R2) CRBc
s

Î ~1 1 5R2 1 13R4 1 25R6!

~1 1 5R2!~1 2 R2 1 2R4!~1 1 R2!~1 1 2R2!
CRBc

s

1

Î2
Î1 1 R2 CRBc

s

Î~1 1 R2!~1 1 3R2 1 2R6!

2~1 1 8R2 1 7R4 1 4R8!
CRBc

s

FIG. 3. Interaction terms corrc and corrv for a symmetric doublet as
function of the absolute value of the inverse of the overlap factorR. The marks
correspond to the estimated absoluteR21 values of ATP multiplets.
LE
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316 CAVASSILA ET AL.
function of R21. Of course, if the two peaks strongly over
(R3 `) they reach large values (corrc 3 ` and corrv 3 `).
Note that forR 5 2, for example, corrv is around 5 and th
corrc is as large as 15 revealing quantitation difficulties.

Summarizing, we have for doublets the following:

● The CRBs for a peak of a doublet equal the product o
CRB of the peak considered isolated times a term “corr”
represents the interaction between the two peaks of the do
This provides quick insight into the effect of overlap.

● The interaction terms corrv and corra do not depend on th
amplitudesck. In addition, they do not depend on which p
of the doublet is considered.

● The interaction terms corrc are also independent of t
amplitudes. On the other hand, they do depend on which
of the doublet is considered.

Triplets

In general, a triplet entails a Fisher matrix of size 123 12.
To make analytical inversion of such a matrix tractable,
assumed that the triplet was symmetric,a 5 a 1 5 a 2 5 a 3,
c 5 c1 5 c3 5 1

2 c2, f 5 f 1 5 f 2 5 f 3, v 3 5 v 1 1 2Dv 5
v 2 1 Dv. Using the same approximations as before,
calculated the 144 elements ofF. InvertingF with Maple, we
obtained the CRB expressions in Table 3. The expression

TAB
Cramer-Rao Lower Bounds on Symmetric Triplet Parameters a

the Parameters of the Central Peak Considered Isolated (CRBc
s

Knowledge, (b) Fixed Frequencies, (c) Fixed Frequencies and Dam

CRB

a CRBv1 5 CRBv3 5 0.25(1 1 R2)(4 1 R2) CRBv
s

CRBv2 5 0.5(1 1 R2) 2 CRBv
s

b CRBv1 5 CRBv2 5 CRBv3 5 0
CRBv1 5 CRBv2 5 CRBv3 5 0

CRBv1 5 CRBv2 5 CRBv3 5 Î ~

8~144 1 1536R2 1 2555R

CRB

a CRBc1 5 CRBc3 5 0.125=2(32 1 160R2 1 298R4 1 241R6 1
CRBc2 5 =1 1 8R2 1 26R4 1 32R6 1 13R8 CRBc

s

b CRBc1 5 CRBc3 5 Î256 1 1920R2 1 5664R4 1 9272R

8~32 1 160R2 2 16

CRBc2 5 Î~1 1 R2! 2~4 1 29R2 1 82R4 1 165R6!

~4 1 21R2 2 24R4 1 13R6!
CRBc

s

c CRBc1 5 CRBc3 5 Î~1 1 R2!~4 1 R2!

8
CRBc

s

CRBc2 5
1

Î2
~1 1 R2! CRBc

s

d CRBc1 5 CRBc3 5 Î ~96 1 360R2 1 132R4 1 1

1280 1 13184R2 1 22560R4 1 126
CRBc2 5 2 CRBc1 5 2 CRBc3
e
t

let.

ak

e

e

are

more complicated than those for doublets, but the propert
the latter remain valid for triplets. Additional properties are
follows:

● The interaction terms corrv and corra depend on whic
peak of the triplet is considered. However, for strong ove
the dominating power ofR becomes 4 for all peaks of t
triplet.

● The interaction terms corrc depend on which peak of t
triplet is considered. For strong overlap, the dominating po
of R becomes 5 for the outer peaks but 4 for the central p

uantitation of the latter then becomes progressively m
recise than that of the former.

4. INFLUENCE OF PRIOR KNOWLEDGE

Methods based on nonlinear least-squares fitting suc
VARPRO (22, 28, 29) or AMARES (30) and some rece

VD-based methods allow us to include prior knowledge o
oles (31, 32), the frequencies (33), and the phases (34). In-

corporation of prior knowledge in turn reduces the numbe
free parameters and consequently the size of the inform
matrix F. Note that prior knowledge is not always trustwor
in in vivo studies. For example, the resonance frequency

etabolite may depend on pH, and additional unknown c

3
Function of the Overlap Factor R 5 (2a)/Dv and of the CRBs on
2(2a)1/2=tss and CRBv

s 5 2=2 (2a)3/2=tss/c), (a) No Prior
ings, and (d) Chemical Prior Knowledge as Defined in the Text

i 5 1, 2, 3

8R2 1 2R4!~1 1 R2! 3~4 1 R2! 3

1204R6 1 825R8 1 672R10 1 256R12 1 48R14 1 4R16!
CRBv

s

i 5 1, 2, 3

R8 1 9R10)CRBc
s

5001R8 1 12108R10 1 12157R12 1 5610R14

1 509R6 2 434R8 1 221R10!
CRBc

s

6 1 138R8 1 36R10 1 4R12!~1 1 R2!~4 1 R2!

R6 1 8771R8 1 6582R10 1 2439R12 1 444R14 1 36R16 CRBc
s

LE
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4 1
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ponents may be superimposed on multiplets. As mention
the Introduction, the correct model function must be u
which implies that the prior information be correct. If we n
assume linear relations between model parameters of the
kind (for example,cl 5 acm andv l 5 vm 1 b, in whicha and
b are real-valued constants), we introduce theprior knowledge
matrix P,

Plm 5 S pl

p9m
D , l 5 1, 2, . . . 4K, m 5 1, 2, . . . ,L.

[22]

F can then be expressed as

F 5
1

s 2 R~PTD HDP!, [23]

herep9 5 ( p91, . . . , p9L)
T corresponds to theL (L # 4K)

unconstrained parameterspl to be estimated, andD has bee
defined previously. WhenL 5 4K, P is the identity matrix
The ensuing CRBs are given in Eq. [8].

This new formulation of the Fisher matrix (Eq. [23]) allo
imposition of linear relations between model parameters
simple manner. We have derived analytical expressions Cpk

for symmetric doublets, triplets, and three sets of prior kn
edge which successively involve an increasing numbe
constraints: (1) fixed frequencies; (2) fixed frequencies
dampings; (3) chemical prior knowledge on multiplet st
tures, namely (i) weak, fixed scalar couplings, and ampli
ratio of 1:1 for a doublet and 1:2:1 for a triplet, (ii) eq
dampings, and (iii) equal phases (not too restrictive for c
peaks and small dead time). The results are presented, r
tively, in Tables 2 and 3 for symmetric doublets and trip
The CRBpk expressions are generally more complicated
those obtained without prior knowledge. But they are
equal to the product of the CRB of the peak considered iso
times an interaction term.

The ratio CRBpk/CRB , 1 provides immediate insight in
he benefit of prior knowledge on parameter precision.
nverse of this ratio is displayed in Fig. 4 as a function ofR21

for the amplitudes of symmetric doublets and triplets.
linear relations bring about a reduction of the CRBs. We
that a reduction of errors can occur even for weak ove
(R 3 0). For example, when the poles are fixed, the r
CRBpk/CRB 3 1/=2 for both doublets and triplets. Wh
imposing the mentioned chemical prior knowledge, CRpk/
CRB 3 1/=2 for doublets. Whenever the peaks involv
overlap, i.e., when the dampings are large or the freque
close (R 3 `), the error reduction can be by anorder of
magnitude.This is more pronounced for triplets than for d
blets. In most cases, the largest reduction results from
chemical prior knowledge mentioned above. Hence, its im
sition is highly recommendable.
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5. APPLICATION

To illustrate our theoretical study, we used quantita
results ofin vivo 31P signals of a rat brain. The measurem
were performed on a nonanesthetized, but immobilized, W
rat at 2 T. Each signal was made up of 1000 averages an
acquired in 14 min. Methylene diphosphonic acid (MDP
was used as an external reference. Signal quantitation
performed using the advanced time domain signal proce
package MRUI, which provides facilities for supplying pr
knowledge (35, 36). The VARPRO method based on a non
ear least-squares algorithm was selected and the follo

FIG. 4. Inverse reduction factors of the errors on (a) amplitudes
symmetric doublet and (b) amplitude of the central peak of a symmetric t
as a function of the absolute value of the inverse of the overlap factorR. Three
sets of prior knowledge were imposed: (1) fixed frequencies (solid line
fixed frequencies and dampings (dashed line); (3) chemical prior knowled
multiplet structures as defined in the text (dash–dotted line). The m
correspond to the estimatedR21 values of ATP multiplets.
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318 CAVASSILA ET AL.
prior knowledge was imposed: (1) the ratios between
amplitudes of the peaks were 1:1 for the ATP doublets
1:2:1 for the ATP and MDPA triplets, assuming that the w
scalar coupling approximation is valid. (2) The damping
tors of the peaks within a multiplet were kept equal. (3)
phases of all peaks were set to 0 relative to the estim
zero-order phase and the dead time of the receiver was
mated. (4) All scalar couplings were put equal to 20 Hz.
Fourier transforms of the measured and fitted signals are s
in Fig. 5. Overlap factors were obtained from a prev
quantitation result (37), enabling calculation of the reduction
he CRBs. The invoked prior knowledge increases the p
ion by an order of magnitude (see Fig. 4).
By considering pairs of peaks (e.g., the “doublet” formed

he PCr peak and the left peak of thegATP), the interactio
terms corrc1, corrc2, and corrv between the peaks were co-

uted from Eqs. [18] and [21] (see Table 4). When the in
ction terms are near unity, the two peaks can be consi

solated. It is clear that theg- andaATP doublets, thebATP
triplet, and the MDPA triplet can be considered isolated s
tures. On the other hand, the peaks of the cluster inor
phosphate, phosphomonoester, and phosphodiester stron
terfere with one another. Note that phosphocreatine and
phodiester only slightly interfere.

Estimation of the ATP doublet and triplet model parame
severely suffer fromintramultiplet overlap. As a result, corc
and corrv reach very high values (see Fig. 3), e.g., for
aATP peaks the interaction terms are around corrc 5 7 and
corrv 5 3.

FIG. 5. In vivo 31P spectra of a rat brain obtained at 2 T. MDPA was u
doublet structure for thegATP andaATP and the symmetric triplet structu
J 5 20 Hz. From bottom to top: the experimental spectrum obtained a
estimated signal, the spectrum of individual estimated peaks, and then
e
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Finally, note that a pairwise analysis as shown in Tab
provides insight into interaction between the various struc
present in a spectrum. In other words, our approach a
handling of measurements comprising many peaks.

6. CONCLUSIONS

We have derived analytical expressions for the asymp
CRBs on the model parameters of a singlet, a doublet, a

as an external reference. The quantitation was done with VARPRO. The
for thebATP and MDPA were imposed. All scalar couplings were put equ
FFT of the acquired signal, the reconstructed spectrum obtained afte
residue.

TABLE 4
Pairwise Analysis of an in Vivo 31P Spectrum of a Rat Brain

Pair R corrc1 corrc2 corrv

MDPA-PME 0.07 1.01 1.01 1.0
PME-Pi 0.96 3.02 3.17 1.8
PME-PDE 0.62 1.72 1.66 1.3
PME-PCr 0.16 1.04 1.04 1.0
PME-gATP1 0.11 1.02 1.02 1.0
Pi-PDE 0.88 2.23 1.99 1.5
Pi-PCr 0.15 1.04 1.04 1.0
Pi-gATP1 0.10 1.02 1.02 1.0
PDE-PCr 0.57 1.29 1.34 1.1
PDE-gATP1 0.30 1.10 1.10 1.0
PCr-gATP1 0.21 1.09 1.09 1.0
gATP1-gATP2 1.06 3.85 3.85 2.1
aATP1-aATP2 1.43 6.85 6.85 3.0

Note.The interaction terms corrc1 and corrc2, pertain respectively, to the le
and the right peaks of the considered pairs.
sed
re
fter
the
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triplet assuming exponential damping. These expression
valid if a sufficiently large number of samples is used. This
done with and without prior knowledge. The following co
clusions are drawn from these expressions:

1. The CRB of a parameter of a doublet peak is the pro
of the CRB for the same, but isolated, peak and an intera
term.

2. The interaction term provides valuable insight into
effects of overlap. For example, it depends only on the da
ings and doublet splitting, butnot on the amplitudes.

3. Conclusions (1) and (2) apply also for a triplet.
4. Imposition of prior knowledge does not modify conc

sions (1) and (2). For overlapping peaks, the error redu
can be by anorder of magnitude.

5. The results enable analysis of more complicated sp
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