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We have derived analytical expressions of the Cramér-Rao
lower bounds on spectral parameters for singlet, doublet, and
triplet peaks in noise. We considered exponential damping
(Lorentzian lineshape) and white Gaussian noise. The expressions,
valid if a sufficiently large number of samples is used, were derived
in the time domain for algebraic convenience. They enable one to
judge the precision of any unbiased estimator as a function of the
spectral and experimental parameters, which is useful for quanti-
tation objectives and experimental design. The influence of con-
straints (chemical prior knowledge) on parameters of the peaks of
doublets and triplets is demonstrated both analytically and nu-
merically and the inherent benefits for quantitation are shown.
Our expressions also enable analysis of spectra comprising many
peaks. © 2000 Academic Press
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1. INTRODUCTION

In signal processing, the CramBao bound (CRB)1-3) on

parameter is to be estimated with a specified precision, tl
minimum number of acquisition averages can be predicted.

e Prior knowledge of relations between model paramete
decreases the CRBs and consequently increases the precis

Consequently, the CRBs give precious insight into the pc
tential performance of quantitation estimators. Evaluation c
the CRBs requires inversion of the Fisher information magrix
whose size equals the number of real-valued parameters to
estimated. When a large number of sinusoids is involve
inversion ofF becomes analytically intractable, and the CRB:
are to be computed numerically. Nevertheless, expressions
CRBs on the frequencies have been reported in a number
papers 8§-14 but to the best of our knowledge analytical
expressions for all parameters were only given for a singlet
nonoverlapping peaks in Refsl5-18. We succeeded in de-
riving analytical expressions for CRBs on all free parameter:
for two and three exponentially damped sinusoids in Gaussic
noise, valid if a sufficiently large number of samples is usec
These expressions were conveniently derived in the time d

the variance of unbiased estimators is widely used as a meagi@n using the symbolic algebra software Mail§)(to invert
of attainable precision of parameter estimates from a given &etThey enable one to judge the precision of model paramete
of observations 4). This paper enhances its usefulness f@s a function of the spectral and experimental parameters.

magnetic resonance spectroscopy quantitation.

First, we rederive the CRBs for a singléi§f and point out

Since clinical conditions do not permit us to obtain standaf@me interesting properties. Then, we treat the cases of
deviations by repeating measurements, one can use the CRgdblet and a triplet with overlapping constituents. Subse

instead. Their main properties are as follows:

e The correct model function must be used.

e The precision of the quantitation estimateenotsuper-

sede the CRBs.

quently, we express the influence of overlap on the mod
parameter estimates of the involved peaks in terms of intera
tion coefficients. These coefficients provide strong insight
concerning the resolving power of the quantitation method
Then, we study the influence of prior knowledge of relation:

e The CRBs are independent of the estimation proceduffatween model parameters of the constituents of doublet a
Consequently, the same CRBs apply to both the frequency afgjet structures (i.e., knowledge of relative frequencies, an

the time domain estimators, provided that they lead to &fde ratios) and point out the inherent benefits on precisiol

unbiased estimate.

Finally, we show that our theoretical results obtained for two c

e The CRBs of the frequencies determine the spectral rggree peaks can be applied to real-world signals.

olution.

e The CRBs of the amplitudes reveal whether the quantita-

tion is sufficiently precise.

2. ANALYTICAL TREATMENT

e The CRBs are useful for experimental design, i.e., they The CRB theory is based on the so-called Likelihood func
allow us to optimize the sample positiorss-{) or, when some tion (20). Supposing that the noiseless data can be exac

311

1090-7807/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.



312 CAVASSILA ET AL.

modeled by the complex-valued time domain model function 1,
%, N =0,...,N— 1, the measured datg can be written F=_2%(D"D), [7]
as
R whereD, = 9%, /op, forn=0,1,...,N— 1 andl = 1,
Xn = Xo + by, [11 2, ... N,. The size of equals the numbé, of real-valued

parameters to be estimated. The superscript H denotes Her:
where b, is Gaussian-distributed noise. Since the noise fian conjugation andi stands for real part. The matri@
complex-valued, the probability df, (and samplex,) is the requires computation of the derivatives of the samplewith
product of two distribution functions, one for the real part angbspect to the parametgsusing their true values. The CRBs
one for the imaginary part, which are supposedly uncorrelategh the standard deviations of the estimated parametease
given by the fundamental CrdmBRao inequality,

1 ba) 1 —b5
P = V/27T0'|? exp< 20'r2> V//27TUi2 GX% 20-i2>' g op, = CRB, = \"(Fil)”' (8]

whereo, ando; are, respectively, the standard deviations of thes seen from Eq. [8], evaluation of the CRBs requires inver!
real and imaginary parts of the noise. In NMR, generally iag the Fisher information matrik.

guadrature lock-in detection provides the real and imaginarylf we suppose that the signal can be modeled by a suk of
parts of the signal which do not modify the characteristics ekponentially damped sinusoids, each model sarkiptan be
the noise distribution. Consequently, we can assumesthat written as

o; = o. The joint probability functiorP of the measurement

X = (Xo, Xi, ..., Xn-1)' (the superscript T denotes the
transposition), the so-called likelihood function, equals tryg
product of the probability functions of all samples: "

K

= > cexpl(a, + jontdexp(jdy)

k=1
N N—1 2 K
P(b) = ! ex _ Znsolloil® [3] = > czlexpjd), n=0,1 N-1 9
- 2770_2 20_2 ’ _k:1 k&k J¢kn - ’ 3oy ’ []
— T
WheTeb = (bo, by, e by-1) - . . . wherec, « = —1/T%, w and ¢ are, respectively, the ampli
It is common practice to use the logarithm of this funCt'OﬂJdes, the damping factors (minus the inverse of the appare
P(b). transverse relaxation tinig;), the angular frequencies, and the
phasesj’ = —1, t,is the sampling interval, and ti® are the
N-1 poles of the signal. With this model function the elementk of
L=1InP(b) = =N In2mc? — 552 > |lbdll? [4] contain summations of the form
n=0
1 N-1 N-1
= -NIn2mo?—5 5 3 > (nt)'exp((a + jw)nty), [10]
n=0 n=0
X ((an - 5\(nr)z—’— (Xni - 5\(ni) 2)' [5]

wherei equals 0, 1, or 2. In order to make later calculation:

A b f Ea. 151, in th faG . tractable, the following simplifications were adopted. First
S can be seen from £q. [ ],_|r! 1€ case of a Laussian nol Ne,: Nt was assumed large enough to make the functior
maximizing L amounts to minimizing the sum of square

. . X . L . 'exp((@ + jo)t), i = 0, 1, 2, small with respect to the noise
residues. The Fisher information matrix is defined Bg) ( level. This leads to asymptotic expressions of the CRES. (

. Second, considering that the sampling rgteis satisfied and
_ aL aL ty is large @3), Eq. [10] can be approximated by analytical
F=El|==] (==, 6] . . ) .
ap) \ap integral expressions given i24),

whereE stands for Expectation value apd= (pi, po, - - -, o

pn,)' represents thi, real-valued model parameters. Working J t'exp((a + jo)t)dt = —il(a + jo) 'Y, a<0.
out the expectationf: can be expressed as the real part of a /4

complex-valued matrix produc®®), i.e., [11]
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With the model function in Eq. [9], the size & equals K. e The CRB on the amplitude depends only on the noise ar
Then, when a large number of sinusoids is involved, analyticabt on the amplitude. It isc times that on the phase. The
inversion of matrixF becomes intractable and the CRBs musxpression is

be computed numerically rather than analytically. Neverthe-

!ess, if_ prior knowledge on relatiqns between model parameters CRB, = ¢ CRB, = 2(—«) 1/2\[S o. [15]
is available, constraints can be imposed on model parameters, _
which in turn reduces the size &f e Using Egs. [12] and [13] one finds that both the correla

We have succeeded in deriving analytical expressions of t#fgh between the angular frequency and phase and the cor
CRBs on spectral parameters for isolated (well separatélgz;n between the damping and the amplitude equeal2L/All
peaks and for two and three overlapping peaks. These exp r correlations are zero.
sions enable one to make an estimation of the precision of All CRBs are proportional to the square root of the sam
parameters as a function of spectral and acquisition paramet8H§g interval. This suggests that oversampling decreases t
Consequently, they are useful for experimental design. MorfeRBs. However, the noise obtained after the antialiasing lov

over, they obviate the need for running extensive numeri(ﬁ.ss filter included in the receiver chain is St|”, White, an(
calculations. Gaussian and its spectral density is constant, consequer

ol VAF = oVt, = ¢ whereAF is the spectral bandwidth
(25). Consequently, no gain should be expected but note th
the reduction of the quantitation noise due to oversamplin
(26) is not taken into account.

3. THE CRAMER-RAO LOWER BOUNDS FOR ISOLATED
AND OVERLAPPING PEAKS

Singlets or Isolated Peaks The noise standard deviatienis inversely proportional to
m_e square root of the number of acquisition averages. Tht

For a single or isolated peak, characterized by four para . ! ) .
when some parameter is to be estimated with a specifie

etersp = (¢, «, ¢, w)', F " is the following 4 X 4 matrix

. precision, the minimum number of acquisition averages can |
(15, 16: ;
predicted.
The above results are also valid for a singlet peak that
c « ¢ ® isolated from the other peaks in the spectrum (see next se
4o 4a’lc 0 0 tion).
4a’lc 8a®/c? 0 0
Fl=—tg? 0 aO dlc? Aa?c? |- [12] Doublets
0 0 40%/c? 8ad/c? For two overlapping peaks with parameters w,, a;, ¢;

Co W, = w; + Aw, a,, ¢, (Aw = 27J, J being the scalar
coupling) and using Eq. [11], we derived analytical expressior
for the 64 elements of (see Table 1). To simplify the
expressions and remove the dependengy,iwe assumed that
andd¢, are equal (e.g., when the receiver dead time is equ
Q or known). We introduced the overlap faci®yr

Recall that this result is valid if the numbat of samples is
sufficiently large implying thaty exp((@ + jo)ty), i = 0, 1,
2, is small.

The diagonal elements & * are the variance bounds on the'*
parameters (squares of the CRBs). The nondiagonal elemdft
of F~* are the covariance bounds between the model parame

ters and the correlation between model paramgteasdp,, is R= ot ap [16]
governed by the relation Aw
(Y which characterizes the doublet shape.
Pim m [13] In the case of well-separated peaks, the nondiagonal e

= -1 -1, °
VEDu(F D ments ofF connecting the 4x 4 diagonal blocks are small
(R — 0) and the matrix approaches a block diagonal matri
From Eqg. [12] one can infer the following: see Fig. 1. The matrix expressions given in Eq. [12] can &

h h lar f h . easily derived by inverting each % 4 diagonal block sepa-
* The CRBs on the angular frequency and the damping %ﬁely. In the case of overlapping peaks, the elements conne

equgl to each other. They depend ;trongly on.the dgmping 8 the 4 X 4 diagonal blocks are significant which in turn
are inversely proportional to the signal-to-noise ratio (SNR}yjies that one must analytically invert the entire® matrix
The expression is F. For that, we used Maple and arrived at interesting analytic
expressions foF " (27).

For both peaks, the CRBs on the angular frequencies a

_ _ [D(— )32 &
CRB, = CRB, = 2,2(-) ™"\, dampings turn out to be equal to each other:

olq

[14]
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=T ‘3 FIG. 1. Example of a block diagonal Fisher information matixfor a
. signal containind peaks. Each square represents>a4 block. The elements
= = g = in the white squares are near zero.
@
T o |5 gfF
xi+ g, |+
e e B e ‘NNNN‘“’;
o ¢ 2FeR SEaRlef§ R o o
< 3 T K Do gl T CRB,, = CRB,, = corr, CRB;,, k=1, 2, [17]
Il s 9. |g ol.
- =g 5
< [ ~ ~ . . .
= ‘ i where CRB, is defined by Eq. [14] and pertains to pelk
= T & -~ & considered isolated (the superscript s indicates the case o
=2 I single peak). Furthermore,
= o2 g & |- “
El o Baoneg 3oy o o
3 3
& e 1+R? L (18]
%) 2 § & 2 corr, = ﬁz s
< | ‘ s “ 1+ R
-
L =~ o~ ~ o
- 2 v ol K |k
o = - o 4 where
< % + oo+ o, +
- oo | T 1\;'/ ‘ m:‘/ [ -
= o waltn GBS 2R A B
) 3 °© ° ‘ 3 “' S8 o SR
8 R I TR 1 a1 — a 19]
- O — J =
g g lE % B K o+ a,
~ T .
j
(=] o
= - & [T represents an asymmetry factor of the doublet. Equation [17]
= 14 + e . .
=] o + Bl seen to be the product of the CRB pertaining to an isolate
|55 R | . . .
=2 . L o wd wE %2 35 5% ol peak and a term coyidenoting the interaction between the two
— © = 5} S .
2 ' M D b3 peaks. The term cogrdepends on the dampings and on the
i ¢ 12 2% frequency separation of the two peaks hat on their ampli-
T ! tudes. In addition, Eq. [18] shows that the interaction betwee
e e two signal components is small when one decays much mo
o i slowly than the other|,| < |a,|) or when the peaks are well
x|+ @)y + ™|+ . .
oo 6% e e e oo separated such th& — 0. Figure 2a displays cqras a
§ s[3 yoe e g 5 g T 5|3 i 3 function of the inverse of the normalized parametefs=
SITglr gl a/Aw anda = a,/Aw. Note that cory is largest when the two
3 5! 5 3 .
A dampings are equal.
e . The CRB on the amplitude, is c, times that on the phase
@ Nﬁf & ¢ As before, the expression is the product of the CRB of
+ @ + . . .
. e ile gl ol single peak and an interaction term
s s o o B3 o5 5T ER
: + KEEV f + N
[8) +
g ol & | CRB, = c¢,CRB,, = cort,CRB;, k=1,2, [20]
I o it
[ where CRB, is defined by Eqg. [15] and pertains to the péak
I . .
w considered isolated and
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FIG. 3. Interaction terms cogrand cory, for a symmetric doublet as a
5007 function of the absolute value of the inverse of the overlap faRtarhe marks
0. P correspond to the estimated absolRe€" values of ATP multiplets.
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Eq. [16]. Consequently, statistically speaking no problems a
to be expected when one peak of the spectrum is very strol

FIG. 2. 3D maps showing the interaction factors for a doublet. (a).corrsych as the water or fat peaks. This result suggests that pr
and (b) cory, as a function of the normalized parametéis/a, andAw/az.  gyhtraction of a dominant signal is not necessary, provided th
its model function is known. Moreover, one can infer that «
broad overlapping background peak severely hampers the p

(1+RH[(1 + R?H? cise determination of the parameters of a superimposed peak
B + datab(l + a'5— 3a’i + 6atal)] interest.
corte, = (1+ R%n??3 : Figure 2b shows the interaction term ¢oms a function of

the inverse ofy; andas. Like corr,, corr,, is maximal when the
two dampings are equal and can reach very large value
The quantity cory, is obtained by exchanging the subscripts Equations [18] and [21] are simpler in the case of a symmetr
and 2 in the expression of corr Note that cory, = corr,, doublet with parametera = a; = a,, C = C; = C,, ¢ =
when a; = a,. The interaction term cogrand consequently ¢, = ¢,, 0w, = w; + Aw, and R = (2a)/Aw. The
CRB,, doesnotdepend on the amplitudes of the two peaks bubrresponding CRB expressions are given in Table 2. Tt
only on the overlap which in turn is governed By defined in interaction terms cogrand cory, are displayed in Fig. &s a

[21]

TABLE 2
Cramer-Rao Lower Bounds on the Parameters of a Symmetric Doublet as a Function of the Overlap Factor R = (2a)/Aw and of the
CRB:s on the Isolated-Peak Parameters CRBS = 2(—a)"*Vt,o and CRB:, = 2VV2(—a)**Vt,a/c, (a) No Prior Knowledge, (b) Fixed
Frequencies, (c) Fixed Frequencies and Dampings, and (d) Chemical Prior Knowledge as Defined in the Text

CRB,, = CRB,, CRB,, = CRB,
a (L+ R®) CRBS V(I + 2R)(1 + R?) CRBS
(1 + 5R? + 13R* + 25RS)
b 0 CRB;
V(@ + 5R®)(1 — R2 + 2R (1 + R})(1L + 2R?) c
1
c 0 ﬁ‘/l + R? CRB;
+ 2 + 2 + 6
d (1 + R9’A + 2R CRB: (21(1 +R8)|$ + ?24 + 528)) CRE;
2(1 + 8R% + 7R* + 4R®) ©
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TABLE 3
Cramer-Rao Lower Bounds on Symmetric Triplet Parameters as a Function of the Overlap Factor R = (2a)/Aw and of the CRBs on
the Parameters of the Central Peak Considered Isolated (CRB; = 2(—a)"*Vt,o and CRB{, = 22 (—a)**Vt.0/c), (a) No Prior
Knowledge, (b) Fixed Frequencies, (c) Fixed Frequencies and Dampings, and (d) Chemical Prior Knowledge as Defined in the Text

CRB, i=1,23
a CRB,, = CRB,, = 0.25(1+ R?(4 + R? CRB;
CRB,, = 0.5(1 + R%? CRB;
b CRB,, = CRB,, = CRB,, = 0
c CRB,, = CRB,, = CRB,, = 0
d CRB - CRB. — CRB. - (3 + 8R? + 2R%(1 + RH)(4 + R?? CRES
o v @~ \8(144 + 1536R? + 2555R* + 1204R° + 825R® + 672R™ + 256R™ + 48R™ + 4R™) ~©
CRB, i=1,23
a CRB, = CRB, = 0.125V/2(32 + 160R* + 298R* + 241R° + 80R® + 9R™)CRB:
CRB,, = V1 + 8R? + 26R" + 32R" + 13R° CRB;
b CRE - CRp — .[?56* 1920R* + 5664R" + 927R° + 500IR" + 1210R™ + 12I5R™ + 561R™
B. = CRR, = 8(32 + 160R? — 166R* + 509R® — 434R° + 221RY) g
CRB. (1 + R)%(4 + 29R* + 82R* + 165R") CRE:
e (4 + 21R? — 24R* + 13R9) o
(1 + RY(4 + RY .
c CRB, = CRB, = g CRB
CRB, = (1 + R? CRE;
c2 \/E( ) c
RE - CRE - (96 + 360R? + 132R* + 190R® + 138R° + 36R™ + 4R™(1 + RH(4 + R? -
d CRB. = CRB, = /1280 + 1318/R? + 2256®R* + 12608R° + 877IR® + 658R + 243RZ + 444R™ + 36R™ R0

CRB,, = 2 CRB,, = 2 CRB,

function of R™*. Of course, if the two peaks strongly overlapnore complicated than those for doublets, but the properties
(R — =) they reach large values (cor~ « and corf, — ). the latter remain valid for triplets. Additional properties are a
Note that forR = 2, for example, coryis around 5 and that follows:

corr, is as large as 15 revealing quantitation difficulties.

Summarizing, we have for doublets the following: e The interaction terms cofrand corf, depend on which

peak of the triplet is considered. However, for strong overlaj

e The CRBs for a peak of a doublet equal the product of thRe dominating power oR becomes 4 for all peaks of the
CRB of the peak considered isolated times a term “corr” thgiplet.

represents the interaction between the two peaks of the doubley The interaction terms cardepend on which peak of the

This provides quick insight into the effect of overlap. triplet is considered. For strong overlap, the dominating powe

e The interaction terms coyand corf, do not depend on the of R becomes 5 for the outer peaks but 4 for the central pea

amplitudesc,. In addition, they do not depend on which pealguantitation of the latter then becomes progressively mo

of the doublet is considered. precise than that of the former.
e The interaction terms cqrrare also independent of the

amplitudes. On the other hand, they do depend on which peak 4. INFLUENCE OF PRIOR KNOWLEDGE
of the doublet is considered.

Methods based on nonlinear least-squares fitting such
VARPRO (22, 28,29 or AMARES (30) and some recent

In general, a triplet entails a Fisher matrix of size’2212. SVD-based methods allow us to include prior knowledge of th
To make analytical inversion of such a matrix tractable, waoles @1, 32, the frequencies3@), and the phases34). In-
assumed that the triplet was symmetic= «, = a, = a3, corporation of prior knowledge in turn reduces the number c
C=C,=C3=3Cp =0, =, =3, w3=0w; + 2Aw = free parameters and consequently the size of the informati
w, + Aw. Using the same approximations as before, wmatrix F. Note that prior knowledge is not always trustworthy
calculated the 144 elements I6f InvertingF with Maple, we in in vivo studies. For example, the resonance frequency of
obtained the CRB expressions in Table 3. The expressions aretabolite may depend on pH, and additional unknown con

Triplets
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ponents may be superimposed on multiplets. As mentionedan 20
the Introduction, the correct model function must be used | b

. X i i . i oublet structure known
which implies that the prior information be correct. If we now . : -~ Poles known
assume linear relations between model parameters of the san@w' \ — Frequencies known
kind (for exampleg, = ac, andw, = w,, + b, in whicha and
b are real-valued constants), we introducepher knowledge
matrix P,

for a symmetric do
o

oo
T

pk

_ (9P _ _
Pon={gpr ) =124 m=1,2,... L

™~
M
CRB/CRB
/
/
/

F can then be expressed as T T

1 .
F=_,%(PD"DP), [23] R

b =20
wherep’ = (p4, ..., pl)" corresponds to the (L = 4K) o ~ Trplet sructure known
unconstrained parameteps to be estimated, anD has been b -~ - Poles known
defined previously. Wheh = 4K, P is the identity matrix. —— Frequendies known
The ensuing CRBs are given in Eq. [8].

This new formulation of the Fisher matrix (Eq. [23]) allows
imposition of linear relations between model parameters in ag | '\ jarp
simple manner. We have derived analytical expressions £RB « SO
for symmetric doublets, triplets, and three sets of prior knowl-§x 8l V¥
edge which successively involve an increasing number ofxn™ N
constraints: (1) fixed frequencies; (2) fixed frequencies an o EERN
dampings; (3) chemical prior knowledge on multiplet struc- & 41 R
tures, namely (i) weak, fixed scalar couplings, and amplitude B
ratio of 1:1 for a doublet and 1:2:1 for a triplet, (ii) equal - S oo ot
dampings, and (iii) equal phases (not too restrictive for close ¢ :
peaks and small dead time). The results are presented, respec- T g
tively, in Tables 2 and 3 for symmetric doublets and triplets. _ _

The CRB, expressions are generally more complicated thanFIG' 4 Inverse reduction f_actors of the errors on (a) amplltudgs _of ;
. . . Symmetric doublet and (b) amplitude of the central peak of a symmetric triple
those obtained without prior knowledge. But they are sti s a function of the absolute value of the inverse of the overlap fRct®hree
equal to the product of the CRB of the peak considered isolat@sk of prior knowledge were imposed: (1) fixed frequencies (solid line); (2
times an interaction term. fixed frequencies and dampings (dashed line); (3) chemical prior knowledge ¢

The ratio CRﬁk/CRB < 1 provides immediate insight into multiplet structures as definled in the text (dash—dotted line). The marl
the benefit of prior knowledge on parameter precision. TIf87esSPond fo the estimat&i™ values of ATP multiplets.
inverse of this ratio is displayed in Fig. 4 as a functiorRof
for the amplitudes of symmetric doublets and triplets. The
linear relations bring about a reduction of the CRBs. We find 5 APPLICATION
that a reduction of errors can occur even for weak overlap
(R — 0). For example, when the poles are fixed, the ratio To illustrate our theoretical study, we used quantitatiol
CRB,/CRB — 1/\/2 for both doublets and triplets. Whenresults ofin vivo *'P signals of a rat brain. The measurement
imposing the mentioned chemical prior knowledge, GRB were performed on a nonanesthetized, but immobilized, Wist
CRB — 1/V2 for doublets. Whenever the peaks involvedat at 2 T. Each signal was made up of 1000 averages and w
overlap, i.e., when the dampings are large or the frequencaxjuired in 14 min. Methylene diphosphonic acid (MDPA)
close R — «), the error reduction can be by awder of was used as an external reference. Signal quantitation w
magnitude This is more pronounced for triplets than for douperformed using the advanced time domain signal processi
blets. In most cases, the largest reduction results from thackage MRUI, which provides facilities for supplying prior
chemical prior knowledge mentioned above. Hence, its impkrowledge 85, 3§. The VARPRO method based on a nonlin-
sition is highly recommendable. ear least-squares algorithm was selected and the followil

metric triplet.
>

ury
N
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FIG.5. Invivo*P spectra of a rat brain obtained at 2 T. MDPA was used as an external reference. The quantitation was done with VARPRO. The syr
doublet structure for thgATP andaATP and the symmetric triplet structure for tBATP and MDPA were imposed. All scalar couplings were put equal tc
J = 20 Hz. From bottom to top: the experimental spectrum obtained after FFT of the acquired signal, the reconstructed spectrum obtained after FF
estimated signal, the spectrum of individual estimated peaks, and then the residue.

prior knowledge was imposed: (1) the ratios between theFinally, note that a pairwise analysis as shown in Table
amplitudes of the peaks were 1:1 for the ATP doublets apdovides insight into interaction between the various structure
1:2:1 for the ATP and MDPA triplets, assuming that the weghresent in a spectrum. In other words, our approach allov
scalar coupling approximation is valid. (2) The damping fadrandling of measurements comprising many peaks.

tors of the peaks within a multiplet were kept equal. (3) The

phases of all peaks were set to O relative to the estimated 6. CONCLUSIONS

zero-order phase and the dead time of the receiver was esti-

mated. (4) All scalar couplings were put equal to 20 Hz. The we have derived analytical expressions for the asymptot

Fourier transforms of the measured and fitted signals are sha@iRBs on the model parameters of a singlet, a doublet, anc
in Fig. 5. Overlap factors were obtained from a previous

quantitation result37), enabling calculation of the reduction of

the CRBs. The invoked prior knowledge increases the preci- TABLE 4
sion by an order of magnitude (see Fig. 4). Pairwise Analysis of an in Vivo *P Spectrum of a Rat Brain
By considering pairs of peaks (e.g., the “doublet” formed by
the PCr peak and the left peak of th&TP), the interaction Pair R corr, corr,, corr,
terms coryg,, corr,,, and cory, between the peaks were com MDPAPME 0.07 1ol Lol 100
puted from Egs. [18] and [21] (see Table 4). When the integ;, - o 0.96 302 317 188
action terms are near unity, the two peaks can be consideggt.ppe 0.62 1.72 1.66 1.32
isolated. It is clear that thg- and «ATP doublets, theg8ATP  PME-PCr 0.16 1.04 1.04 1.02
triplet, and the MDPA triplet can be considered isolated struBME-YATP, 0.11 1.02 1.02 101
tures. On the other hand, the peaks of the cluster |norgaﬁlé°DE 0.88 2.23 1.99 1.52
r 0.15 1.04 1.04 1.02
phosphate, phosphomonoester, and phosphodiester stronglwnATP 010 1.02 1.02 101
terfere with one another. Note that phosphocreatine and phﬁ@E PCr 057 1.29 1.34 1.16
phodiester only slightly interfere. PDE«ATP, 0.30 1.10 1.10 1.05
Estimation of the ATP doublet and triplet model parameteREr-yATP, 0.21 1.09 1.09 1.05
severely suffer fromintramultiplet overlap. As a result, cqrr YATPrYATP: 1.06 3.85 3.85 2.13
oATP;-aATP, 1.43 6.85 6.85 3.04

and cory, reach very high values (see Fig. 3), e.g., for the
aATP peaks the interaction terms are around cetr7 and Note.The interaction terms cagrand cor,, pertain respectively, to the left
corr, = 3. and the right peaks of the considered pairs.
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triplet assuming exponential damping. These expressions &2eH. B. Lee, The Cramer-Rao Bound on frequency estimates of

valid if a sufficiently large number of samples is used. This was
done with and without prior knowledge. The following con-
clusions are drawn from these expressions: !

1. The CRB of a parameter of a doublet peak is the product
of the CRB for the same, but isolated, peak and an interactibh
term.

2. The interaction term provides valuable insight into thg;
effects of overlap. For example, it depends only on the damp-
ings and doublet splitting, butot on the amplitudes.

3. Conclusions (1) and (2) apply also for a triplet. 16.
4. Imposition of prior knowledge does not modify conclu-
sions (1) and (2). For overlapping peaks, the error reduction

can be by arorder of magnitude.

5. The results enable analysis of more complicated spectra.
1
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